

Content

Heavy ion status and upgrades

- Stochastic cooling
- 56 MHz SRF
- Electron Beam Ion Source (EBIS)

Polarized proton status and upgrades

- A_nDY as 3rd colliding beam experiment
- Polarized source
- Electron lenses
- Energy increase, polarized ³He

RHIC heavy ions – luminosity evolution to date

<L> = 15x design in 2011

About 2x increase in L_{int}/week each

- Run-4 to Run-7
- Run-7 to Run10
- Run-10 to Run-11

Rate of progress will slow down – burn off 50% of beam in collisions already

 $L_{NN} = L N_1 N_2$ (= luminosity for beam of nucleons, not ions)

Run-11 Au-Au $\sqrt{s_{NN}}$ = 19.6 GeV (nominal injection energy)

Run Coordinator: Greg Marr

06:00

09:00

12:00

Time (Start Fill = 15686)

15:00

Run-11 Au-Au $\sqrt{s_{NN}}$ = 200 GeV (finished yesterday)

Run Coordinator: Greg Marr

Setup to physics in 4 days (from operation at injection energy) Exceeded peak, average, and weekly luminosities from Run-10.

Run-11 Au-Au $\sqrt{s_{NN}}$ = 200 GeV (finished yesterday)

Run Coordinator: Greg Marr

Working on $\sqrt{s_{NN}}$ = 27 GeV now ...

RHIC heavy ions – luminosity limit IBS

Intrabeam scattering leads to debunching and transverse emittance growth

growth rates

$$au^{-1} \propto rac{Z^4}{A^2} rac{N_b}{\gamma}$$

[Factor 15 between Au an p]

- Maximize focusing in all dimensions
- Frequent refills
- Cooling at full energy

RHIC – 3D stochastic cooling for heavy ions

RHIC – effect of stochastic cooling in Run-11

strong transverse cooling makes longitudinal cooling less efficient, i.e. these longitudinal profiles at the end of a store with be more pronounced with horizontal cooling next year

[hourglass factor 0.75 at beginning, 0.55 at end of store]

56 MHz SRF for heavy ions – under construction (I. Ben-Zvi et al.)

RHIC heavy ions – other luminosity limits

Operate close to a number of other limits:

- Instabilities on ramp at transition (γ_{tr} = 26) ← at limit in Run-7 driven by machine impedance and electron cloud
- Beam loading during rf rebucketing

 at limit in Run-10
 limit removed last summer by separating common storage cavities
- Intensity limit of beam dump (quench Q4) ← at limit in Run-10 limit removed last summer by inserting sleeves in beam dump pipe
- Bunch intensity limit from injector chain
 injected N_b = 1.5x10⁹ in Run-11
- Chromatic aberrations with small β^* about 50% of particle loss due to burn-off, other 50% largely due to off-momentum dynamic aperture tested β^* squeeze in store after cooling to equilibrium

Above list changes from year to year as most limiting effects are mitigated.

Upgrades for heavy ions and polarized protons – in situ-coating

- Electron clouds limit
 - Ion intensity (through instability at transition)
 - Proton emittance at injection, and intensity
- Warm parts are largely coated with NEG
- Cold arcs are stainless steel, not coated

Need in-situ coating for arcs

A. Hershkovich et al.

Test tube coated with Cu

BROOKHAVEN NATIONAL LABORATORY

Electron Beam Ion Source (EBIS) (J. Alessi et al.)

- 10 A electron beam creates desired charge state(s) in trap within 5 T superconducting solenoid
- Accelerated through RFQ and linac, injected into AGS Booster
- All ion species incl. noble gas, uranium and polarized ³He

Operated for NSRL with

He⁺, He²⁺, Ne⁵⁺, Ne⁸⁺, Ar¹¹⁺, Ti¹⁸⁺, Fe²⁰⁺

Commissioning for RHIC under way

- Work on 4x Au³²⁺ increase to design intensity 2x from electron current. 2x from transmission
- Received U cathode
- Tandem still available as backup next year

Asymmetric collisions (p-Au)

- p-Au was considered in RHIC design (D. Trbojevic), no operation yet 100.8 GeV p on 100.0 GeV/nucleon Au ($\gamma_p = \gamma_{Au} = 107.4$)
- Need to translate DX magnets horizontally by 4.33 cm p are bent stronger than Au⁷⁹⁺
- For energy scan need to match Lorentz factor γ of both beams

Parameter	unit	p-Au		p-Au	
No of bunches	10000)	111	111	111	111
Ions/bunch, initial	10°	100	1.0	200	1.2
Average beam current/ring	mA	139	110	278	132
Stored energy per beam	MJ			0.36	0.42
β*	m	0.85		0.60	
Hour glass factor		1.00		0.91	
Beam-beam parameter ξ/IP	10-3	4.3	1.7	5.2	3.5
Peak luminosity	10 ²⁸ cm ⁻² s ⁻¹	30	1	95	
Average / peak luminosity	%	60		60	•
Average store luminosity	10 ²⁸ cm ⁻² s ⁻¹	18		57	
Time in store	%	55		55	
Maximum luminosity/week	nb-1			189	
Minimum luminosity/week	nb-1	60			

Low energy collider operation

Au-Au energy scan with E = 3.85, 5.75, 9.8, 13.5, 19.5, 31.2, 100 GeV/nucleon

Up to nominal injection energy (9.8 GeV/nucleon) luminosity can be enhanced by electron cooling, use of Fermilab Pelletron possible (other options exist)

Have moved back by 2 year possible start of this upgrade due to manpower demand and needed guidance from experiment (completion ≥Run-17)

Cooling into space charge limit $\Delta Q_{\rm sc} \sim 0.05$ (new collider regime)

Figure 4. Simulation of luminosity with (blue line) and without (black dots) electron cooling at γ =2.7.

Luminosity and Polarization Goals

Parameter	unit	Achieved	With full stoch. cooling and 56 MHz cavity		
Au-Au operation		2011	≥ 2	012	
Energy	GeV/nucleon	100	10	00	
No of bunches		111	111		
Bunch intensity	10^{9}	1.3	1.1		
Average Luminosity	10 ²⁶ cm ⁻² s ⁻¹	30	40		
p ↑- p ↑ operation		2011	≥ 2012	≥ 2014	
Energy	GeV	100 / 250	100 / 250	250	
No of bunches	•••	109	109	109	
Bunch intensity	10^{11}	1.3 / 1.65	1.3 / 1.7	2.0	
Average Luminosity	$10^{30}\mathrm{cm^{-2}s^{-1}}$	24 / 90	30 / 150	300	
Polarization	%	56 / 46	65	70	

Projections projection for Au-Au

Expect smaller performance increases after Run-14

(operate close to burn-off limit, further L increase only with more beam filled or faster burn)

[Note1 :assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max] [Note 2: last projections from 11 May 2010 still valid – reached peak performance goals for both polarized protons and heavy ions, will update after Run-11]

RHIC polarized protons – luminosity and polarization

- <P> increased from 37%
 to 46% at 250 GeV in Run-11
 still significant effort needed
 to reach goal of 70%
- Building blocks for pp design luminosity at 250 GeV demonstrated in Run-9 and Run-11 need to be put together plans to go beyond
- Expect no large increase in luminosity at 100 GeV before electron lenses

Run-11 250 GeV store overview – polarization and luminosity

Run Coordinator: Haixin Huang

Run-11 polarized proton luminosity $\sqrt{s} = 500 \text{ GeV}$

Run Coordinator: Haixin Huang

RHIC time-in-store history (% of calendar time)

Time-in-store in Run-11 pp lower than in previous runs

- No common reason identified for reduced time-in-store
- Increase in MTTR (Mean Time To Repair), PS overall about the same as Run-9
- 2 largest events (refrigerator off, AGS power cable) account for 9%
- Effect on performance stronger than linear (scheduling difficult, less time for implementation of improvements, more time re-establishing machine)

Unusual events in 250 GeV polarized proton Run-11

- Total of 6 snow days during start-up (>20 h excused time in January), delayed physics by about ½ week
- Fast emittance growth in Blue ring (intermittently observed in 2007 and 2009, tracked down to loose wire in dump kicker thyratron module B), delayed physics by about ½ week
- Breaker trip on 03/07/11 leads to refrigerator shut-off and helium venting in 2:00 and 6:00 service buildings, loss of about 3.5 tons of He, after repair encounter difficulties in purchasing replacement He, operation re-established on 03/17/11 – 219h downtime
- Power cable failure shut-down most of AGS equipment and part of building 911 – 78h downtime
- New 9 MHz RF system breaks 1 week before run end (current shield for bellows failing leading to overheating), luminosity cut in half

Run 11 Polarization Performance

- AGS horizontal tune jump system operational: P +8% with high intensity
- Acceleration near $Q_v = \frac{2}{3}$ in RHIC, measured orbit rms ~20 μ m: P + 25%
- Polarization at end of 250 GeV ramp: 53%
- With incremental improvements <P> = 55 60% possible for next run:

Changes in source/LEBT/MEBT: +6% in <P> Smaller emittance growth (24 \rightarrow 18 μ m): +8% in <P> Small change in store energy: no P decay during store: +5% in <P>

 Remaining pol. Loss during AGS (~15%) and RHIC (~15%) accel., to be studied with tracking simulations

P lifetime in store

Polarization evolution in AGS and RHIC

- Polarization loss from intrinsic resonances: polarization lost at edge of beam
 → polarization profile
- Impact of polarization profile on beam polarization at collisions:

$$\begin{split} P(x,x',y,y') &= P_0 e^{-\frac{x^2+x'^2}{2\sigma_{x,P}^2}} e^{-\frac{y^2+y'^2}{2\sigma_{y,P}^2}}; \quad I(x,x',y,y') = I_0 e^{-\frac{x^2+x'^2}{2\sigma_{x,I}^2}} e^{-\frac{y^2+y'^2}{2\sigma_{y,I}^2}}; \quad R_x = \frac{\sigma_{x,I}^2}{\sigma_{x,P}^2}; \quad R_y = \frac{\sigma_{y,I}^2}{\sigma_{y,P}^2}; \\ \left\langle P \right\rangle &= P_0 \frac{1}{(1+R_x)(1+R_y)}; \quad P_{coll.} = P_0 \frac{1}{\sqrt{1+\frac{1}{2}R_x}\sqrt{1+R_x}\sqrt{1+\frac{1}{2}R_y}\sqrt{1+R_y}}} = \left\langle P \right\rangle \frac{\sqrt{1+R_x}\sqrt{1+R_y}}{\sqrt{1+\frac{1}{2}R_x}\sqrt{1+\frac{1}{2}R_y}} \end{split}$$

- For $R_x \approx R_v$ and small: $P_0 = \langle P \rangle (1 + \langle R \rangle)^2$; $P_{coll.} = \langle P \rangle (1 + \frac{1}{2} \langle R \rangle)$
- Note that P₀, the polarization of the core particle, should be equal to the maximum achievable polarization.

	<p></p>	<r></r>	P _{coll.}	P_0	P _{max} .
AGS extr.	67.6 ± 1.0	0.02 ± 0.02		70.3 ± 1.0	80.0
RHIC inj. B	65.7 ± 0.3	0.08 ± 0.02		76.6 ± 0.4	76.6
RHIC inj. Y	66.3 ± 0.3	0.08 ± 0.02		77.3 ± 0.4	79.3
RHIC 250 GeV B	52.2 ± 0.3	0.17 ± 0.02	56.6 ± 0.3	71.5 ± 0.4	76.6
RHIC 250 GeV Y	54.5 ± 0.3	0.16 ± 0.02	58.9 ± 0.3	73.3 ± 0.4	79.3

A_nDY in Run-11 (250 GeV pp)

- Beam envelope function $\beta^* = 3.0$ m at IP2
- Reduced IP2 crossing angle from initially 2.0 mrad to zero
- Added 3rd collision with following criteria (last instruction):
 - 1. $N_{\rm b} \le 1.5 \times 10^{11}$
 - 2. Beam loss rate <15%/h in both beams
 - 3. Not before first polarization measurement 3h into store

Future operation of A_nDY

- Can reduce β^* at IP2 have run with β^* = 2.0 m previously for BRAHMS β^* = 1.5 m probably ok, needs to be tested
- Longer stores
 10h instead of 8h in Run-11 (depends on luminosity lifetime and store-to-store time)
- Collide earlier in store when conditions are met needs coordination with polarization measurement, PHENIX and STAR
- Electron lenses (see later) if A_nDY runs beyond Run-13 increases max beam-beam tune spread, currently ΔQ_{max,bb} ≈ 0.015 can be used for to increase ξ~N_b/ε and/or number of collisions

Run-11 luminosity at A_nDY: max ~0.5 pb⁻¹/store

With improvements:

~3x increase,

~10 pb⁻¹/week (max)

(A_nDY sees stronger impact of prematurely aborted stores than STAR and PHENIX)

Optically Pumped Polarized H⁻ source (OPPIS)

Current OPPIS

A. Zelenski, PST2009

- 29.2 GHz ECR source used for primary H⁺ generation
- source was originally developed for dc operation

RHIC OPPIS produces reliably 0.5-1.0 mA polarized H- ion current.

Polarization at 200 MeV: P = 80-85%.

Beam intensity (ion/pulse) routine operation:

Source - 10¹² H⁻/pulse

Linac - 5x10¹¹

AGS - 1.8-2.0x10¹¹

RHIC - 1.8x10¹¹/bunch

Optically Pumped Polarized H-source (OPPIS) - A. Zelenski

Upgraded OPPIS (Run-13)

10x intensity increase was demonstrated in a pulsed operation by using a very high-brightness Fast Atomic Beam Source instead of the ECR source

Goals:

1. H⁻ beam current increase to 10mA (order of magnitude)
2. Polarization to 85-90% (~5% increase)

Upgrade components:

- 1. Atomic hydrogen injector (collaboration with BINP Novosibirsk)
- 2. Superconducting solenoid (3 T)
- 3. Beam diagnostics and polarimetry

Electron lenses – partial head-on beam-beam compensation

Polarized proton luminosity limited by head-on beam-beam effect $(\Delta Q_{bb.max} \sim 0.02)$

Basic idea:

In addition to 2(3) beam-beam collisions with **positively** charged beam have another collision with a **negatively** charged beam with the same amplitude dependence.

Exact compensation for:

- short bunches
- $\Delta \psi_{x,y} = k\pi$ between p-p and p-e collision
- no nonlinearities between p-p and p-e
- same amplitude dependent kick from p-p, p-e
- only approximate realization possible

Expect up to 2x more luminosity
with OPPIS upgrade
Commissioning planned for Run-13

Luminosity and Polarization Goals

Parameter	unit	Achieved	With full stoch. cooling and 56 MHz cavity		
Au-Au operation		2011	≥ 2	012	
Energy	GeV/nucleon	100	10	00	
No of bunches		111	111		
Bunch intensity	10^{9}	1.3	1.1		
Average Luminosity	10 ²⁶ cm ⁻² s ⁻¹	30	40		
p ↑- p ↑ operation		2011	≥ 2012	≥ 2014	
Energy	GeV	100 / 250	100 / 250	250	
No of bunches	•••	109	109	109	
Bunch intensity	10^{11}	1.3 / 1.65	1.3 / 1.7	2.0	
Average Luminosity	$10^{30}\mathrm{cm^{-2}s^{-1}}$	24 / 90	30 / 150	300	
Polarization	%	56 / 46	65	70	

Projections for p^-p^

[Note1:assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max] Note 2: last projections from 11 May 2010 still valid – reached peak performance goals for both polarized protons and heavy ions, will update after Run-11 Note 3: A_nDY operation with ~10 pb⁻¹/week after ramp-up

Energy upgrade – W. MacKay, BNL C-A/AP/422

Motivations:

- Increase in W production cross section
- 2. eRHIC

Main issues:

- Quench performance of magnets (DX, arc dipoles and quads, IR quads)
- Crossing angles at IPs and luminosity
- Polarization
- Current feedthroughs
- Power supplies and transformers
- Dump kicker (strength, pre-fires)
- Reliability generally reduced at higher energies

Energy upgrade – W. MacKay, C-A/AP/422

observed quenches in arc dipoles

estimated # of training quenches

Conclusion:

- 10% increase to 275 GeV (+45% in σ_W) feasible with current magnets about 20 DX, 10 other training quenches, more cooling at some current leads
- Requires some hardware upgrades (power supplies)
- Effect on polarization still needs study
- Energies >275 GeV require too many training quenches hundreds of arc dipole training quenches alone for 325 GeV

Polarized d

 Polarized neutrons for RHIC and eRHIC could be in deuterons (d = ²H¹⁺) or ³He²⁺

	p	${}_{1}^{2}\mathrm{H}^{+}$	${}_{1}^{3}\mathrm{H}^{+}$	${}_{2}^{3}\mathrm{He^{+2}}$
$M [{\rm GeV/c^2}]$	0.938272	1.875613	2.808921	2.808391
$\mu/\mu_{ m N}$	2.792847	0.857438	2.972962	-2.127498
G = (g-2)/2	1.792847	-0.142987	7.918171	-4.183963

- d <u>very difficult</u> at high energy (i.e. RHIC)
- Currently no technical solution for maintaining and rotating polarized deuterons (G = −0.14) in RHIC
- Siberian snake with $B_{\text{out}} = 33.5 \text{ T}, B_{\text{in}} = 101.6 \text{ T}$

Orbit excursion in snake for deuterons ->

[W. MacKay, CAD MAC-05, 09/15/2010]

Polarized ³He

[Summary W. MacKay, CAD MAC-05, 09/15/2010]

Deuterons not good in RHIC — perhaps in a figure-8 ring.

→ He³ looks promising: no real show stoppers.

- Source: ³He⁺² OPPIS source proposal: Milner/Zelenski See Anatoli Zelenski's presentation.
- $|G\gamma|_{\text{max}}$ is higher for He³:
 - More and Stronger resonances in all rings.
- ³He polarimeters need to be developed.
- AGS cold snake may be sufficient at lower field. AGS warm snake (fixed field) might be too strong ($\sim 14\%$).
- AGS injection and extraction spin-matching: not too bad.
 - Booster to AGS may need matching (depends on AGS snakes).
- RHIC snakes and rotators will work with lower fields.
- Lower injection rigidity for RHIC should be OK.
 - Injection orbit excursions reduced.

Polarized ³He source R&D

- Plans to start working on ³He source (MIT R. Milner, Mainz)
- 3 possibilities discussed to use EBIS (A. Zelenski, J. Alessi et al.):
 - 1. ³He[^] production outside EBIS limits on field gradients
 - 3He[^] production inside EBIS space and maintenance issues, P source measurement
 - 3. Injection of ³He⁺ into EBIS
- In all cases EBIS ionizes to ³H^{2+^}
- Aim for 2.5x10¹¹ ions from EBIS, 1x10¹¹/bunch in RHIC
- Could collide ${}^{3}\text{He} {}^{3}\text{He}$ or p- ${}^{3}\text{He}$ at $\gamma_{\text{max}} = 178$ (${}^{3}\text{He}$ with 166.2 GeV/nucleon, p with 167.5 GeV)

Further upgrades are possible ...

Heavy ions

Once operating near the burn-off limit with short stores, only an increase in the stored beam intensity will yield more integrated luminosity

injector chain, in-situ coating and/or high-band width feedback at transition, machine protection, more longitudinal focusing on ramp, ...

Polarized protons

Not burn-off dominated, reduction in beam size at IP and increase in bunch intensity up to the beam-beam limit, push out beam-beam limit

in-situ coating, machine protection, small β^* with re-build IR without DX, Coherent Electron Cooling, ...

RHIC luminosity upgrade program – summary

Heavy ion upgrades

Reached: E=100 GeV/nucleon, <L>=30x10²⁶cm⁻²s⁻¹

- Electron Beam Ion Source (U beams) under commissioning
- Horizontal stochastic cooling (counteracting IBS, +30% L) (Run-12)
- 56 MHz SRF (counteracting IBS, +30-50% L) (Run-14)

Polarized proton upgrades (polarization, beam-beam)

Reached: E=250 GeV, <L>=90x10³⁰cm⁻²s⁻¹, <P>=46%

- Polarized source upgrade (10x intensity, +5% P) (Run-13)
- Electron lenses (reduction of head-on beam-beam, up to 2x L) (Run-13)
- Energy increase by 10% appears feasible
- Work on polarized ³He source started